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1. Introduction

Calculation of the multiloop radiative corrections in different physical processes becomes

more and more important nowadays. Mainly this is because of the increasing precision

of the modern experiments, both in high-energy physics and in spectroscopy. The use of

the IBP identities [1, 2] is a standard approach to the effective calculation of the loop

integrals. These identities can reduce the problem of calculation of arbitrary integral with

a given topology to that of calculation of the limited number of simpler integrals of the

same topology and its subtopologies.

However, the application of the IBP identities is hampered by their infinite number.

The problem is that it is not always clear which identities should be used to reduce a

given integral. One standard approach, which has proved to be useful, is considering the

identities starting from the simplest ones and creating a database of the rules for the

reduction [3]. This algorithm is essentially sequential, since, in order to solve the next

identity, it is necessary first to substitute all integrals which are already in the database.

Another approach to the problem is to reduce it to the problem of “division with the

remainder” with respect to some ideal [4]. The main difficulty on this way is to derive the

Gröbner basis of the ideal allowing for the correct determination of the simplest remainder.

According to ref. [5], this procedure essentially depends on the ordering chosen. This choice

is, in some cases, not a simple problem, and the Gröbner basis then can be hardly found.

Thus, the first approach (Laporta approach) appears to be necessary, at least, in this

situation.

One of the problems which can spoil the effectiveness of the Laporta approach is the

excessiveness of the IBP identities. When the IBP identities are considered one-by-one,
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most identities do not give any additional information. Indeed, the number of the identities

grows as the volume of the region in Z
N multiplied by the number of identities in one point,

L(L + E) (L being the number of loops, E, the number of external momenta), while the

number of integrals involved grows only as the volume of the region in Z
N . Thus, in the

asymptotics, only one identity out of L(L + E) give new information. Other identities

in the Laporta approach are checked to reduce to 0 = 0. Unfortunately, this check can

be a very time consuming calculation. The determination of the minimal set of the IBP

identities is also important for the analytical solution of identities (i.e., the derivation of

the reduction rules) as it allows one to consider a smaller set of the identities.

Though the algebraic manipulation with the IBP identities has been used for a long

time, the observation that IBP identities form a closed Lie algebra has not been exploited

so far. The main purpose of this paper is to demonstrate how the Lie-algebraic properties

of the IBP equations can be used for both “division with the remainder” algorithms and

Laporta-like algorithms.

2. General discussion

Assume that we are interested in the calculation of the L-loop integral depending on the E

external momenta p1, . . . , pE . There are N scalar products depending on the loop momenta

li:

sik = li · qk , 1 6 i 6 L, k 6 L + E,

N = L(L + 1)/2 + LE (2.1)

where q1,...,L = l1,...,L, qL+1,...,L+E = p1,...,E.

The loop integral has the form

J (n) = J(n1, n2, . . . , nN ) =

∫

dDl1 . . . dDlLj(n) =

∫

dDl1 . . . dDlL
Dn1

1 Dn2

2 . . . DnN

N

(2.2)

where the scalar functions Dα are linear polynomials with respect to sij. The functions

Dα are assumed to be linearly independent and to form a complete basis in the sense

that any non-zero linear combination of them depends on the loop momenta, and any sik

can be expressed in terms of Dα. Thus, each integral is associated with a point in Z
N .

Some of the functions Dα correspond to the denominators of the propagators, the other

correspond to the irreducible numerators. E.g., the K-legged L-loop diagram corresponds

to E = K − 1 and the maximal number of denominators is M = E + 3L − 2, so that the

rest N − M = (L − 1)(L + 2E − 4)/2 functions correspond to irreducible numerators. For

vacuum diagrams, M = 3(L − 1), and N − M = (L − 2)(L − 3)/2.

The IBP identities are based on the fact that, in the dimensional regularization, the

integral of the total derivative is zero. They are derived from the identity

0 =

∫

dDl1 . . . dDlLOikj(n) =

∫

dDl1 . . . dDlL
∂

∂li
· qkj(n) . (2.3)

Performing the differentiation in the right-hand side and expressing the scalar products

via Dα, we obtain the recurrence relation for the function J .
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There is also another class of identities, called Lorentz-invariance (LI) identities due

to the fact that the integral (2.2) is Lorentz scalar [6]. They have the form

pµ
i pν

j

(

∑

k

pk[ν
∂

∂p
µ]
k

)

J(n1, n2, . . . , nN ) = 0 (2.4)

The differential operator in braces is nothing but the generator of the Lorentz trans-

formation in the linear space of scalar functions depending on pk. If we explicitly act by

the differential operator on the integrand, we obtain LI identity. Though these identities

can be convenient in some cases, they can be easily represented as some linear combination

of the IBP identities (see appendix) and will not be considered in the following.

For the reduction procedure to work, it is necessary to define some suitable ordering

of the integrals, i.e., the ordering in Z
N . First, one introduces the notion of sectors in Z

N .

The (θ1, . . . , θN ) sector, where θi = 0, 1, is a set of all points (n1, . . . , nN ) in Z
N whose

coordinates obey the condition

sign (nα − 1/2) = 2θα − 1. (2.5)

In particular, the point (θ1, . . . , θN ) belongs to the (θ1, . . . , θN ) sector, and can be

referred to as the corner point of the sector. Owing to this definition, the integrals of the

same sector have the same number of denominators. It is natural to consider the integrals

with less denominators to be simpler. When the number of denominators coincides, we

will consider the integrals with smaller total power of the numerators and denominators

to be simpler. Then goes the number of the numerators and the last is the lexicographical

ordering. Thus, two points n = (n1, n2, . . .) and n
′ = (n′

1, n
′
2, . . .), are said to be ordered

as n ≺ n
′ iff there exists i0,−2 < i0 6 N , such that ni0 < n′

i0
and for any i,−2 6 i < i0

holds ni = n′
i. Here n−2, n−1, and n0 are determined as

n−2 =

N
∑

α=1

Θ (nα − 1/2) =

N
∑

α=1

θα, n−1 =

N
∑

α=1

|nα|, n0 =

N
∑

α=1

Θ (−nα + 1/2) . (2.6)

The integral J (n) is considered to be simpler than J (n′) if n ≺ n
′. According to this

ordering, the integral J(θ1, . . . , θN ) is the simplest integral of (θ1, . . . , θN ) sector.

3. Operator representation

Let us introduce, similar to ref. [4], the operators Aα and Bα acting on functions in Z
N as

follows

(Aαf) (n1, . . . , nN ) = nα f (n1, . . . , nα + 1, . . . , nN ) ,

(Bαf) (n1, . . . , nN ) = f (n1, . . . , nα − 1, . . . , nN ) . (3.1)

Note that these operators act on function, but not on its arguments, and should not be

confused with the conventional n± index shifting operators. Using these operators, we can
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express the IBP identities as constraints on the function J having the form

−PJ = 0,

P = aαβAαBβ + bαAα + c,

where aαβ, bα, c are some coefficients. We will denote the operator, corresponding to the

Oik as Pik:

− (PikJ) (n) =

∫

dDl1 . . . dDlLOikj (n) . (3.2)

Note that the operators Aα, Bα form Weyl algebra,

[Aα, Bβ ] = δαβ . (3.3)

Let L be the left ideal generated by operators Pik, i.e. a set, consisting of all operators,

which can be represented as
∑

i,k

CikPik, (3.4)

where Cik are some polynomials of A1, . . . AN , B1, . . . , BN . This ideal has a simple meaning:

for any L ∈ L the relation

(LJ) (n1, . . . , nN ) = 0 (3.5)

is a linear combination of some IBP identities. In fact, any linear combination of the IBP

identities can be represented in a more specific form

(LJ) (1, . . . , 1) = 0, (3.6)

since shifting of the indices can be done by acting from the left with some powers of Aα

or Bα. At first glance, the problem of reduction is equivalent to that of division with the

remainder by the ideal L, which is effectively solved by the construction of the Gröbner

basis. However, there is an additional obstacle. Note that for any function f of N integer

variables the following relation holds

(BαAαf) (1, . . . , 1) = 0 . (no summation) (3.7)

Indeed,

(BαAαf) (1, . . . , 1) = (Aαf)

(

1, . . . ,
α
0, . . . , 1

)

= 0 × f

(

1, . . . ,
α
1, . . . , 1

)

= 0, (3.8)

where the overscript α denotes the position of the index. Let R be the right ideal generated

by the elements (B1A1) , . . . , (BNAN ). By definition, it consists of all operators of the form

R =
∑

α

BαAαCα, (3.9)

where Cα are some polynomials of A1, . . . AN , B1, . . . , BN . It follows from eq. (3.7) that

(Rf) (1, . . . , 1) = 0. (3.10)

– 4 –



J
H
E
P
0
7
(
2
0
0
8
)
0
3
1

Thus, for the reduction procedure to work, we have to have an algorithm of division with

the remainder by the direct sum of the left ideal L and the right ideal R. That means that

we have to invent the algorithm allowing the decomposition

p = L + R + r, (3.11)

where L ∈ L, R ∈ R, and r is the simplest possible with respect to the ordering chosen.

Even though the problem is clearly formulated, such algorithm appears to be unknown so

far.

4. Lie-algebraic structure of the IBP identities

The operators

Oik =
∂

∂li
· qk (4.1)

form a closed algebra with the commutation relations

[Oik, Ojl] = δilOjk − δjkOil. (4.2)

We can easily check that the operators Pik obey the same commutation relations as Oik.

This algebra is nothing but the algebra of the group of linear changes of variables

li → Mikqk. (4.3)

The operator Oik corresponds to the infinitesimal transformation li → l′i = li + ǫqk in the

sense that

f(s′lm)dDl′1 . . . dDl′L =

{

f(slm) + ǫ

[

∂

∂li
· qkf(slm)

]}

dDl1 . . . dDlL + O(ǫ2). (4.4)

Note that the so-called symmetry relations are also the consequences of the invariance of

the integrand under the action of some elements of this group.

The scaleless integral can be defined as the one which gains additional non-unity factor

under some transformation (4.3). This definition corresponds to the conventional notion

of scaleless integrals. E.g., owing to this definition, the integral

I =

∫

dDl1 dDl2

(l1 − p)2 l22 (l1 − p − l2)
2 (4.5)

is scalelless as, under the transformation

l1 → αl1 + (1 − α) p,

l2 → αl2 , (4.6)

it transforms as

I → α2D−6 I. (4.7)

In dimensional regularization, the scaleless integrals are zero, as well as the integrals which

differ from the scaleless ones by additional polynomial factor in the numerator. Thus, once

the integral in the corner point of the sector is scaleless, the whole sector is zero. Let us

prove a simple criterion of zero sectors.
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Criterion 1. If the solution of all IBP relations in the corner point of the sector

(θ1, . . . , θN ) results in the identity

J(θ1, . . . , θN ) = 0, (4.8)

then this sector is zero, i.e., all integrals of this sector are zero.

Indeed, by the condition, j(θ1, . . . , θN ) can be represented as the action of some linear

combination of Oik on j(θ1, . . . , θN ). Since these operators are generators of the transfor-

mation (4.3), we can conclude that J(θ1, . . . , θN ) is scaleless and thus, the whole sector

(θ1, . . . , θN ) is zero. This criterion gives a simple and convenient way to determine zero

sectors.

5. Excessiveness of the IBP identities set

In this section we describe some consequences of the algebraic structure of the IBP identi-

ties.

Proposition 1. Let L > 2. Then of all L(L + E) IBP identities we can consider only

identities, generated by the operators:

∂

∂li
· li+1, i = 1, . . . , L, lL+1 ≡ l1

∂

∂l1
· pj, j = 1, . . . , E

L
∑

i=1

∂

∂li
· li (5.1)

Indeed, this set of operators form the multiplicative basis of the Lie-algebra (4.2), i.e.,

the rest of the operators can be obtained from the commutators of the chosen ones. The

total number of the operators in the set (5.1) is L+E+1, which is smaller than the original

L(L + E) for L > 2. This simple fact can be used for the construction of the reduction

rules and also for the Laporta algorithm. Nevertheless, such system of the IBP identities

is still overdetermined. In the asymptotics only 1/(L + E + 1) part of the identities gives

new information.

Now we prove a more refined criterion for the identities which can be thrown away

without loss of information. Let S = {P1, P2, . . . , PK} be some set of the IBP operators,

and P be some IBP operator with the following property: its commutator with any Pk ∈ S

is a linear combination of Pi ∈ S. Then we have the following

Criterion 2. If for some point n ∈ Z
N the integral J(n) can be expressed via simpler

integrals with the help of the identities obtained from the operators in S, then the identity

(PJ)(n) = 0 can be represented as a linear combination of the identities obtained from the

operators in S and the identities of the form (PJ)(n′) = 0 with n
′ ≺ n.
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Proof. To prove it, we note that, since the integral J(n) can be expressed via simpler

integrals with the help of the identities obtained from the operators in S, there exist such

polynomials Cl that for any function f
∑

l

(ClPlf)(1) = f(n) + o (n) , (5.2)

o (n) denotes here the linear combination of f(n′) with n
′ ≺ n. Now we substitute f = PJ :

∑

l

(ClPlPJ)(1) = PJ(n) + Po (n) , (5.3)

and use the commutation relation

PlP = PPl +
∑

m

clmPm (5.4)

where clm are some constants. We obtain

PJ(n) = Po (n) +
∑

l

(ClPPlJ)(1) +
∑

lm

(ClclmPmJ)(1) (5.5)

Here Po (n) denotes the linear combination of PJ(n′) with n
′ ≺ n, and the last two terms

is a linear combination of of the identities obtained from the operators in S.

Let us consider the sequence of the operators

{P1, . . .PN} = {P1,L+E , . . . , P1,1, P2,L+E , . . . , P2,2, . . . , PL,L+E , . . . , PL,L} (5.6)

Note that the number of the operators in this sequence equals to N = L(L + 1)/2 + LE,

the total number of the denominators and numerators in basis. This sequence has the

following property: for any Pi the criterion 3 applies with S = {P1, . . .Pi−1}. Suppose

we have solved the identities, generated by operators {P1, . . .Pi−1}, then the identities,

generated by Pi should be solved only in points for which there are no reduction rules

yet. On each step of this procedure the “dimension” of the set of such points is decreased

by one, thus, when we have considered all operators in the sequence, we have only finite

number of the integrals, which are not yet reduced. The rest L(L−1)/2 IBP identities can

be used for the reduction of integrals in these points. Note, that the mean number of the

identities, considered in each point is 1, as it should be. The choice of the sequence (5.6)

is, of course, not unique.

Now we derive the criterion which can be used for the algorithm combining the “division

with the remainder“ and Laporta method.

Criterion 3. Let in some sector the identities generated by some operator P =
∑

cikPik

have the form

(PJ)(n) = J(ñ) + o (ñ) (5.7)

and for any n in the sector holds

n ≺ ñ. (5.8)

Then the identity generated by another operator P ′ =
∑

c′ikPik 6= P in point ñ, corre-

sponding to the integral expressed by P , can be represented as a linear combination of the

identities of the form PJ and the identities in simpler points.
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Proof. To prove it, let us consider the identity

(

PP ′J
)

(n) =
(

P ′J
)

(ñ) +
(

P ′o
)

(ñ) = P ′PJ (n) +
([

P,P ′
]

J
)

(n) . (5.9)

Thus
(

P ′J
)

(ñ) =
(

P ′PJ
)

(n) −
(

P ′o
)

(ñ) +
([

P,P ′
]

J
)

(n) . (5.10)

The first term in the left-hand side is some linear combination of the IBP identities gen-

erated by P , and the last two terms contain only identities in the points n
′ ≺ ñ. Thus,

the identity P ′J (ñ) is dependent on the identities of the form PJ and on the identities in

simpler points.

The basic idea of application of this criterion is the following. Consider the IBP

identities in general point of the sector. We can either use the set of identities, generated

by Pik or by other L(L+E) independent linear combinations of Pik. In fact, it is natural to

pass to such linear combinations, in which all most complex integrals are different (”solve”

the identities in general point). Among these identities, select one, having the form (5.7)

with n ≺ ñ and ñ corresponding to the integral not yet expressed. Determine the points

of the sector corresponding to the integrals for which this identity does not work. Consider

the other identities only in these points. Repeate the same steps, starting from the selection

of the identity. After some iterations, we might be unable to find the identity matching

the conditions. At this stage, we have to solve the rest of the identities only in the points,

corresponding to the integrals, which are not yet expressed. E.g., we can use the Laporta

method. The advantage of this combined approach is that the “dimension” of the set of

points in which we use the Laporta method is usually essentially less than N .

6. Conclusion

In the present paper, we have considered the dependencies between the IBP identities.

Account of these dependencies dramatically decreases the number of the identities to be

considered. They come from the fact that the corresponding operators Pik form a closed

Lie algebra of the group of linear change of variables. Using this interpretation of the IBP

identities, we have proved the simple criterion of the zero sectors. The two criteria of the

excessiveness of an identity were proven. Probably, using the Criterion 2, it is possible to

prove the finiteness of the number of master integrals in general case. Indeed, selecting the

sequence of the operators as it was described, we decrease on each step the “dimension”

of the set of the unexpressed integrals by one. Since the number of the operators in this

sequence equals N , we are left with the set of “dimension” zero, i.e., consisting of finite

number of points. The Criterion 3 can be used for the combined algorithms in which the

Laporta reduction is performed on some subset of the points of the given sector with the

dimension less than N . It was also shown that the Lorentz-invariance identities can be

completely discarded.

This work was supported by RFBR Grant No. 07-02-00953. I also thank for warm

hospitality the Max-Planck Institute for Quantum Optics, Garching, where a part of this

work was done.
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A. Expressing LI identities via IBP identities

In this appendix we will show that the LI identities always can be represented as a linear

combination of the IBP identities.

Let us note that the integrand j in eq. (2.2) is a scalar function of qi. Thus, the

operator
L+E
∑

k=1

qk[ν
∂

∂q
µ]
k

=

L
∑

k=1

lk[ν
∂

∂l
µ]
k

+

E
∑

k=1

pk[ν
∂

∂p
µ]
k

, (A.1)

when acting on the integrand j, annihilates it identically. Indeed, this operator is nothing,

but the generator of Lorentz transformations in the linear space of functions of qi. Thus,

the operator in eq. (2.4), when acting on the integrand, can be represented as follows:

pµ
i pν

j

E
∑

k=1

pk[µ
∂

∂p
ν]
k

j = pµ
i pν

j

L
∑

k=1

lk[ν
∂

∂l
µ]
k

j − pµ
i pν

j

L+E
∑

k=1

qk[ν
∂

∂q
µ]
k

j

= pµ
i pν

j

L
∑

k=1

lk[ν
∂

∂l
µ]
k

j

=

L
∑

k=1

[

(pi · lk) pj ·
∂

∂lk
− (pj · lk) pi ·

∂

∂lk

]

j

=

L
∑

k=1

[

∂

∂lk
· pj (pi · lk) −

∂

∂lk
· pi (pj · lk)

]

j

Taking into account that the scalar products (pi,j · lk) in the last line can be expressed

via Dα, we conclude, that any LI identity can be represented as a linear combination of

the IBP identities.
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